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ABSTRACT

I The finite-difference method is used for the nonlinear analysis of

shells of revolution consisting of elastic shell segments of various

geometries and wall constructions joined by elastic rings. The analysis

r and associated digital computer program were developed in response to

the need for a better design tool for practical shell structures.

[ Numerical results are presented for displacement and stress distributions

in various pressure vessels. Particular emphasis is given to systems in

which nonlinear effects are important and may influence the design.

[ Values calculated with linear theory are compared with those from non-

linear theory.[
[
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Introduction

The work described herein represents part of an effort to develop a user-oriented

computer program for the analysis of the stress, stability, and vibration of elastic,

ring-stiffened, segmented shells of revolution with various wall constructions and

submitted to various axisymmetric load systems.

Such a structure is shown in Fig. 1, for example. This shell consists of four

segments, labeled D , , , and ® . Segment (D is a meridionally

stiffened coverplate or hatch; ® is a spherical segment reinforced by T-shaped
rings; is a cylinder with ring stiffeners; and @ is an ellipsoidal closure of

variable thickness. The thickness of all of the segments varies near the junctures.

While Fig. 1 does not represent an actual design, it does illustrate some of the features

incorporated into the design of practical shell structures. The shell structure may be

loaded by internal or external pressure, and line loads and moments may be applied

to any or all of the ring reinforcements. The designer may be interested in the

behavior of such a composite shell structure with respect to stress, stability, and

vibration.

A user-oriented computer program called BOSOR 2 has been written for the

general analysis of shells of the type shown in Fig. 1. This program is a "next

generation" successor to the code BOSOR described in Refs. I and 2. The program

BOSOR 2 consists of two parts: a part in which the axisymmetric stresses and dis-

placements are calculated from nonlinear theory, and a part in which nonsymmetric

loads and vibration frequencies are calculated from a linear eigenvalue analysis. The

linear stability and vibration analyses with numerical results are given in Ref. 3.

2
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In this paper the nonlinear analysis for axisymmetric stresscs and displaccmcnts is I
described, and numerical results are given for examples in which nonlincar effects

are significant.

The method of finite-differences is used to calculate axisymmetric stress

states in segmented, ring-stiffened, elastic shells of revolution with various types

of wall construction. Nonlinear equations similar to those developed by Reissner

(Ref. 4) are used in the analysis. The work is an extension of that presented in

Ref. 5. The applicability of the analysis of Ref. 5 is extended to include:

1. Analysis of segmented (composite) shells, such as cylinder-cone

combinations or joined shells with dissimilar wall characteristics.

2. Analysis of shells with discrete rings at a number of stations along the

meridian and at the boundaries.

3. Analysis of shells, the wall properties of which vary in the meridional

direction.

4. Increased generality of the type of axisymmetric loading applied to the

shell.

In addition, much effort has been devoted to making the computer program

user-oriented. It is felt that the main contribution of this paper to the art of

shell analysis is the development of a design tool for practical shell structures

with ring supports, in which nonlinear effects may be important. In this respect

the paper represents extensions to the work of Kalnins (Ref. 6), Radkowski,

et al (Ref. 7), Mason, et al (Ref. 8), Wilson and Spier (Ref. 9), and Sepetoski,

et al (Ref.' 10). -

I
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One of the more important extensions of the analysis of Ref. 5 Is the addition

"of a capability to treat segmented shells. This capability can also be used to advantage

for simple shells. For instance a rather long cylinder submitted to pressure loading

can be divided artificially into three segments: two edge segments in which stresses

and displacements vary rapidly over short lengths, and a central segment in which

deformations are uniform. The station spacing in the finite difference mesh can be

small in the two edge segments and large in the central segment. It has been found

from experience that it is better to divide the shell into segments, and thus to maintain

uniform station spacing within each segment rather than to vary the station spacing

within any segment. Examples are given in the section on Numerical Results in which

single shells are treated in segments.

Nomenclature

A ring cross-section area

All, A1 2 , etc. coefficients of constitutive equations (6)

E Young's modulus

e ring shear center eccentricity, see Fig. 3

ii radial load applied to ring, see Fig. 3

H shell radial load, see Fig. 2

I I moments of inertia about x, y axes; product of inertia (see Fig. 3)

i mesh points

K Gaussian curvature I/R1R2 ; also total number of mesh points

Mt couple applied to ring, see Fig. 3

M shell moment/length, see Fig. 2

4
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N stress resultants, see Fig. 2

p pressure, see Fig. 2

r parallel circle radius, see Fig. 2

R Radius of curvature

u radial deflection, see Fig. 2

V axial load/length in shell, see Fig. 2

axial load/length applied to ring, see Fig. 3

pl meridional rotation, see Fig. 3

C reference surface strain

K reference surface change of curvature

Vo angle from horizontal to tangent to deformed meridian, see Fig. 2

4' stress function 4 = rH

Subscripts and Superscripts

)n thn iteration

S( )+ after meridional discontinuity, see Fig. 3

(- )before meridional discontinuity, see Fig. 3

( )s shear center of ring; also "shell"

( )r pertaining to ring

( )' derivative with respect to arc length

() pertaining to axial (vertical)

pertaining to radial (horizontal)

S( )1 meridional

S( ) circumferential

( )o undeformed

5 _
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Basic Equations

The nonlinear equations of equilibrium of a shell of revolution subjected to

axisymmetric loading are presented in Ref. 4. They are:

(rV)' + rpv = 0 N 2 + rpH 0

S~(1)

(rM 1 )' - CosB M2 + 0 sin9( - rVcosqo = 0

"where the sign conventions are shown in Fig. 2. Here b = rH and superscript prime

"indicates differentiation with respect to arc length s. The strain-displacement and

curvature -displacement relations given in Ref. 4 are:

Cos9 (o u c = /1 os. ( (1 7)2
"c", Cl=•• + 2 =u/r

oI = $t _C 2  = (sinqo - sinq0)/r

"and the compatibility equation derived by elimination of u from Eqs. (2a) and (2b) is

cos- 0 0(re2 )' - cos o0r'EI = rI(cos q0 - Cos Vd) (3)

The basic equations are the compatibility Eq. (3) and the third equilibrium Eq. (ic).

The basic dependent variables are ( and 0. The strains and their derivatives arc

assumed small compared to unity. With r' = cos (o Eqs. (1c) and (3) can be written

in the form

(rXl)' - CO X = f (4)

I1 6
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where in Eq. (Ic): in Eq. (3)

Xi M1 X 2

X2 M2 X2 1 (5)

f = rVcosgp- sinq V = cos V0-cos qo0

The constitutive equations for orthotropic shells can be written in the form

I "A 11 A 1 2 A13 A N14' NN1

2 A21 A22 A23 A24 N 2 (6)
M I A31 A32 A33 A 34 K1
M 2J .A 4 1 A4 2  A4 3 A4 4 , 2

Reissner (Ref. 4) formulated the equilibrium and compatibility equations for the

case of moderate rotations by assuming that

Cos 4 = Cos(B o - f () 1 ) r- + fir/i 2

sin IV = sin (4o 0 - ) s(1- 2 )r/R 2 - Pr'

The dependent variables of the nonlinear stress analysis are now P and 4. Since

the equilibrium and compatibility equations (4) are written in terms of c 1 , E 2 , M ,1

and M2 , which through Eqs. (6) are expressed in terms of N, , N2 K1 and K2 ,

one must obtain the latter quantities in terms of P and 0 , thus:

rx1 = cosqP + rVsinq -

N 2 = + rPH 
(8)

K2 2(r '1 ,2/R2)/ r

7 '
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I Substitution of thc right-hand-sides of Eqs. (8) in Eqs. (6) and of Eqs. (6c, d) in the

I lcft-hand-side of Eq. (4) and use of Eqs. (7) for cos (p and sin (p, leads to:

irA30011+ [r'(A3 1 - A + A) + rA 2] + [r'A' - r' 2 A4 1/r - A31 rK] ' + rA 3 3jP f
+ Ir'(A3 3 + A3 4 - A4 3 - rVA3) + rA; 3 ] 0' + Ir'A•4 - r' 2 A4/r - A3rK

+ rV(A3 1 rK - r'A l + rs 2A4/r- A4 1r/R2) + A 3 1rr' P- - 2p/R

I + (A3 1 - A4 2 )(r/R2 )ý 0' + (A 3 1r'/R 1 + rA~l/R 2  2r'A4 1 /R-2)# + (rA3

-(A4  A ) (r/R 2) p 3 A R 14 (3A 44r'/R2 - A3 4 r'/R - A4 r/R 2 ) 1 2

I

The expression (9) represents the left-hand-side of the equilibrium Eq. (4).
The left-hand-side of the compatibility equation is obtained from Eq. (9) by

the replacement of A3i by A2i and A4, by A,,. This substitution is possible

because c2 in the compatibility equation plays the same role as M in the equilibrium

I equation and c 1 plays the same role as M 2 . The terms not involving A.. , denoted

f in Eq. (4) are given in Eqs. (5). In the development of Eq. (9) terms of higher order

I than quadratic in the dependent variables have been dropped. Also, terms involving

the product of a load and P2 have been dropped.

Boundary Conditions and Compatibility Conditions

Figure 3 shows a portion of a shell meridian with a discontinuity B-A. There

j may be a ring associated with this discontinuity. The shear center of the ring is

8 8
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I

I
located at point C. External forces and moment V, H, and M arc applied to the

ring axis of shear centers. The shell ends A and B also exert forces and moments

Vs, H , and M on the ring, those at A denoted by a superscript plus and those

at B by a superscript minus. There are five compatibility conditions which must be

satisfied at the discontinuity: compatibility of the two force components and the

moment, and compatibility of the meridional rotation P and horizontal displacement

UHr

If the ring centroid coincides with the shear center, the horizontal force

compatibility equation is

BllUHr + B 1 2 rs = - •b/rs + 0+/r.+ 4 H (10)

and the moment compatibility equation is

B 1 2 u + B 2 rP= r-Mrl/r2 + r +Ms/r2 + M/rs -(rVs) (c + fle•)/r 2
12 5l 2a 8 1 2

+ (rVs) (e + + e +)/rs + 0-(e2  - /S 1 2 2 1

+ 2 1 S(

Vertical force compatibility is represented simply by

(rVs) (rVs) + r sV (12)

Compatibility of meridional rotation and horizontal displacement are represented by

the following equations:

u u -+ -- U +P+ -(3
UHr uH + e 2 =HuH+/3e (13)

+ - (14)

9
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The quantitics Bil, B 1 2 , and B 2 2 in Eqs. (10) and (11) are given by

24
B1 1 = EA/ra + EI/r: - H/rs

B -EI /r 4  (15)12 xy a

"B =EI/r r -+ 4 /r -H}
22 x a {r /r

where E, A, I , and I are the modulus, cross-section area, and moments of

x xy
Inertia of the ring about axes through the shear center (see Fig. 3.) It is clear that

Eqs. (10) through (15) can be specialized for the cases where the "discontinuity" (ring)

occurs at either end of the shell. The displacement continuity conditions Eqs. (13)

and (14) no longer apply in these cases,and the appropriate shell forces [either ()+ or

()- are set equal to zero, depending on which end of the shell is being considered.

The statement of the nonlinear boundary value problem is now complete. The

governing equations have the form of Eq. (4), and the boundary conditions (and

compatibility conditions) are given by Eqs. (10) through (14).

Solution of the Equations

All of the equations, including the boundary conditions, can be written in the

form:

C•1  + C 2 + 43 + C 40" + C? + C6O + 0'p + 08

+ C9 Op' + C1000 + C1 + = 0

(16)

10
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The method of finite differences is used in the solution of tLhe equations. Variable

station spacing is allowed for in the analysis, but is not includod in the computer

program. Three-point finite difference formulas are used:

•i=Cli1 + c2i + c3i-
1 1 1+1 2 i 3 i-1

(17)

4"c4 + e + c4i 4 i+l 5 i 6 i-I

where

c, = hi/[h+ 1 ('i + hi+l) c4  = 2/[hi+1 (1. + hi.l)

Sc2  = 1/h - 1/hi+ c 5  = - 2 1 1ii+1 (18)

C3 =-h 1 +1 /[h.(h. + h.i 1 )] c 6 = 2/[hi(h. +

I .t h
and h., h 1 4  are the meridional intervals on either side of the i mesh point. The

quantities 61 and P" are given by formulas analogous to Eq. (17). Eq. (16) in

finite-difference form is

3 3

A,,*,_, + A + A W 1 + A 4 ii + A 5 1*.+l I A 61 +1 + "'jk4'i-2+j i-2-I

j=1 k=1

3

+ Bi j = F = 1, 2, ... K (19)I j ili-2+j i
j=1

11
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ii

-. The index i denotes mesh point number and K denotes the total number of mesh

"points in the domain. There are two unknowns (0'1 and t3i) for each mesh point and

two equations (equilibrium and compatibility) for each mesh point Isee Fig. 4(a)). In

addition, fictitious mesh points are introduced at either end of the meridian and at

meridional discontinuities in order that first derivatives of 4 and 0 can be specified

at the end points of the segment [see Fig. 4(b)). Equations corresponding to these

points are the boundary conditions or matching conditions. Hence, there is a set of

2K + 4(d + 1) nonlinear simultaneous algebraic equations, where d is the number of

meridional discontinuities.

These equations are solved by use of the Newton-Raphson method. Thurston

(Ref. 11) has discussed this method as applied to various nonlinear problems involving

many degrees of freedom. As applied in this case, the Newton-Raphson procedure is

as follows: Eqs. (19) are linearized through substitution of

n+1 n n+1 n
q fi 01 + fi i fi (20)

where n refers to "iteration number" and A0 i and 48 i are correction addends for

the current iteration. Equation (19) is written with 60i and 43i considered as the
n and

unknowns and with terms involving only On and P n removed to the right-hand-side.

Quadratic terms in A4i1 and 48, are dropped. The typical equation for the current

iteration now appears as follows:

A A*iA + Ai* &P + A*iA0i + A* 41 + A*&i + A*6AP
11 1-1 211-_1 31 41 1 1i 1i&O~ 61 1+1

n n ,,n Ai1n -5iln A~~+n
. F i- Aliin_1 - A 21in - A M.n, - A U-n - A51 *1+1  A

3 3 3
"" "• • LOn Pn, 2k P PI nt 21)

-,,- 2.1 13 1i -2+j

J-1 i=1 j=1

12
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The A*mi, m = 1,6 contain i and n3i from the previous iteration. The terms on

the right-hand-side of Eq. (21) are all known. The simultaneous linear sct is solved

for the vector of correction addends A0 and 48i . and these are added to the •,n

and to gi.nen . Iterations continue until satisfactory convergence

has been obtained.

0 0
In the Newton-Raphson method a starting vector €ki ' P. must be assigned. If

1 1

this vector is zero, the solution for the correction addends, and hence for * is

the solution of the linearized equations. Problems that are essentially nonlinear,

such as that of a spherical shell submitted to a point load at the apex, are solved in

the following way: Calculations begin for a small value of the load, for which the

n nlinear theory is reasonably accurate. Previous solutions 0i, are then used as

starting vectors for each new value of the load.

In order that the linear system represented by Eq. (21) be solved with a

reasonable amount of computer time, one must arrange the equations so that the

matrix of coefficients is strongly banded about the main diagonal. If alternate equa-

tions are equilibrium and compatibility equations and if alternate dependent variables

are A i and bpi . the matrix shown schematically in Fig. 4(a) will result. This

matrix corresponds to a shell with one meridional discontinuity. The meridian with

mesh points is shown in Fig. 4(b). Each mesh point "generates" two columns and two

rows in the coefficient matrix. The matching conditions labeled "Horizontal Force

Compatibility," etc. are given by Eqs. (10), (11), (13) and (14), respectively. All

elements not enclosed in a box are zero.

13

LOCKHEED PALO ALTO RESEARCH LABORATORY
tOClut11 M 1 6 S i tPAVCI COMPAN T

A nloup PEV"IMM n? -.-



I -I

I

I Numerical Results

if Numerous test cases have been run to check the portion of the computer program

BOSOR 2 which calculates the axisymmetric state of stress. The number of mesh

I points was varied to ensure convergence. For the test cases the stresses converge to

within a few percent of the exact values with less than 100 mesh points. Two to four

iterations are usually required for convergence to the solution of the governing non-

r linear equations. Figures 5a and 5b show the results of one such test case. A shell

of the geometry shown in Fig. 5a was analyzed by Stricklin, et al (Ref. 12), who used

the matrix displacement method in a nonlinear analysis. In this application of

BOSOR 2, 95 mesh points were used. Three iterations of the Newton-Raphson

procedure were required before successive solutions were within 0.1% of each other.

if The total computer time for execution was 3.15 seconds on the Univac 1108.

Figures 6a and 6b show the meridional bending moments generated in pressurized

I steel hemisphere with a mismatch. Moments resulting from internal pressures of

100 psi and 10, 000 psi are given in Fig. 6a. The effect of internal pressure on the

moment distribution is to shorten the "decay length" of the discontinuity stress. This

is in agreement with results obtained by other investigators. Figure 6b shows that

external pressure has the opposite effect: the discontinuity stress "boundary layer"

is increased in length due to the pressure. While the nonlinear effect of pressure on

the distribution of discontinuity stresses is well known to many specialists in shell

theory, it is rarely if ever accounted for in the design of shell structures. This

effect could be important, for example, in the selection of positions of welds in

composite shell structures.

I 14
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During the manufacture of shell structures certain unplanned variations in

j geometry are likely to occur. Figure 7a shows an example in which the geometry I
near the viewport of a pressure hull for a deep submersible vehicle changed during.

assembly due to the weld on the meridian. The portion of the hull in the neighborhood I
of the apex moved inward slightly as shown by the dotted lines. The measured sinkage

is shown in Fig. 7b. A curve-fitting program (Ref. 13) was applied to the measure- -

ments to calculate the variation in meridional curvature which is shown in Fig. 7c.

Two curves are given in Fig. 7c, one which corresponds to curvatures calculated with

12 input points chosen from Fig. 7b and one which corresponds to curvatures calculated

with 36 input points chosen from Fig. 7b. The nominal curvature is also shown in

Fig. 7c. The structure shown in Fig. 7a was analyzed on the computer as a shell of

two segments: the segment nearest the apex being an "out-of-round" spherical shell

of variable thickness, and the other segment being a perfect spherical segment of

nominal curvature and constant thickness extending to a = 90 deg. The thickness

distribution is taken from Ref. 14, and the edge of the shell at the viewport is assumed

to be free. The meridional bending moments for three cases are shown in Fig. 7d.

In all cases the shell is submitted to uniform external pressure of 1.0 psi. The bending

moment distribution for the perfect shell agrees with that calculated in Ref. 14. This

moment distribution is compared with moments for the imperfect shell in which 12

and 36 input points are used for calculation of the geometry of the variable thickness

segment. Two interesting observations might be made with regard to the results:

the stress distribution is rather drastically affected by the weld sinkage (the maximum

stress, which occurs near the weld at the outer fiber being increased by almost a -

factor of two; and the moment distributions corresponding to the two different I

15 I
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[ gcomctrics (Fig. 7c) calculated by the curve-fitting routine are very similar, even

though the input meridional curvatures are very dissimilar. Apparently, the shell

behavior is related to a "smoothed" or averaged meridional curvature distribution,

[ rather than to the rapidly changing variation of curvature shown in Fig. 7c as a dotted

line. The probable explanation is that the arc length over which the rapid curvature

changes occur is small compared to the attenuation length or "boundary layer" length

of the discontinuity stresses for this particular shell.

Figure 8 gives the hoop stress resultants for pressurized shallow spherical

"shells with edge rings located as shown. Edge moments are also applied as shown.

The vertical reaction coincides with the ring centroid, which is located distances e

and e2 from the edge of the shell. The pressures are 0.619 psi and 0.357 psi for

the two cases. It is seen that small differences in the geometry of the structure

cause large differences in the stress distributions. The ring eccentricities must be

"accounted for in the analysis of such shell structures. As an aid to the designer the

computer program can be used to find the most favorable location of the edge ring.

Figure 9 shows the maximum meridional stress in the outer fiber of an internally

pressurized aluminum cryogenic tank. The geometry is shown at the top and bottom

"of the figure. The inner surface from the centerline to the point D is an ellipsoid

"and from D to the plane of symmetry is a cylinder. The thickness varies linearly

between the stations where it is called out. The large increase in thickness near

the juncture of the cylinder and the ellipsoid was included in the design in order to

compensate for the weakening effect of a weld there. The outer fiber meridional

stress is maximum at point C. As seen from Fig. 9 linear theory yields 93 ksi for

"16
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t I

this maximum, and nonlinear theory yields 74 ksi. The results for linear theory arc

in good agreement with a solution obtained through use of a computer program written

by Kalnins (Ref. 6).

Figure 10 shows SC 4020 computer plots of stress resultants for the cryogenic

tank. The plot routine was written by Dyche (Ref. 15). Various configurations were

analyzed. Figures 10b and 10e correspond to a tank in which the reference surface is

an ellipsoid joined to a cylinder with the thickness distributed equally on both sides of _.

the reference surface. Figures 10a, c, d, f, and g correspond to a tank in which the

same reference surface geometry is considered to be the inner surface of the shell. "

As seen from a comparison of Figs. l0e and 10f, the large bending stress at point C

in Fig. 9 disappears if the shell is manufactured such that the reference surface is

the middle surface.-

Figures 10d and log correspond to 1/1000 of the design pressure p = 70.3 psi,

and thus approximate the linear solution. Note that the hoop stress resultant calculated -"

from linear theory is negative in a small region, giving an erroneous indication of the

possibility of buckling at some higher pressure. Also, the hoop stress resultant at the

plane of symmetry would be over-estimated by about 25% if linear theory were used

for calculation of stresses at the design pressure. The bending stresses predicted

by the linear theory are about twice those predicted by the nonlinear theory. ""

Figure Ila shows a portion of a spherical shell with a local area in which the

radius of curvature is greater than the nominal radius. This "flat" area represents

an imperfection in the shell, which is submitted to uniform external pressure.

Figures hlb and Ilc give the state of the shell just before it collapses in an

axisymmetric mode. Collapse, loads are calculated as described in Ref. 2.
4.
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.iIn the plots the origin corresponds to the apex of the shell. The shell is treated as if

-" iconsisting of three segments: the "flat' spot, a region approximately one "boundary

layer" in length adjacent to the flat spot, and the remainder of the shell. The

meridional station which corresponds to the edge of the "flat"' spot is indicated by

heavy vertical lines in Figs. lib and llc. The dotted lines in the plots of UI and UV

represent the membrane solution extrapolated to the apex of the shell. The plots

_. correspond to a load within 0.1% of the collapse load, which is 28.7% of the classical

-. buckling load for a complete sphere of the nominal radius. In Ref. 16, a collapse

load of 28.00% of the classical buckling load was found in an analysis in which the

entire shell was treated as one segment. It is seen that the maximum inward dis-

placement (UV at the apex = 0.85) is considerably greater than the maximum value

of 0.7 shown in Fig. 2 of Ref. 16. Near the collapse load the displacement increabes

rapidly with small increments in the pressure. This case is included to illustrate

"- the advantage of analyzing a single shell structure in segments. The input data is

simpler, and fewer mesh points are required for convergence to within a prescribed

error.

I
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Fig. 1 Typical "Practical" Shell Structure
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Fig. 5 Meridional and Circumferential Stresses in a Pressure Vessel
With Internal Pressure. Comparison with the results of Ref. 12
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